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Abstract— As a result of integrating a large 

number of electrical energy sources, especially 

renewable energy, the fault current will be increasing 

to unprecedented levels. The use of fault current 

limiters to face the problem of increasing the 

expected short-circuit current in the network has 

become imperative.  The new challenge is the 

increase in types of fault current limiters as a result 

of the tremendous development in the semiconductor 

industry. Choosing the appropriate fault current 

limiter according to the appropriate application is not 

easy.  The huge expansion in the manufacturing of 

fault current limiter technologies requires studying 

their suitability with the potential applications, 

followed by studying the effect of the new FCL on 

the power grid.  This paper presents new 

classifications for the FCLs from the point of view of 

different standards and international guides lines. In 

addition, a comprehensive survey on 

superconducting and non-superconducting FCLs, as 

aiming to provide appropriate assistance in the 

selection of the FCLs. 

Key words - Short circuit current; fault current 

limiter (FCL); distributed generation, types of FCLs, 
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I. INTRODUCTION 
The demand for electricity is increasing 

rapidly with a sharp slope, the increase in power 

demand requires further development and investment 

in the energy sector. This investment requires a very 

high cost because that means upgrading all 

components of the network like; generators, 

transformers, circuit breakers, and transmission lines 

and there is no limit to this progress. There are many 

solutions to manage the increasing power demand. 

One of the solutions is to use distribution generators 

and renewable energy like solar, wind, and 

geothermal. Thus, it is called a distributed generation 

(DG). Distributed generation is small-scale power 

generators placed near the load, which can help 

decrease costs, increase system reliability, save the 

environment by reducing emissions, and allow 

multiple choices for energy sources. Although, the 

(DG) makes an increase in the expected fault current 

during short conditions, which is a major issue that 

can be considered an obstacle to DG improvement. 

The only suitable solution is the fault current limiters 

because the other solution is system upgrades, which 

means a very high cost. The greatest advantage of 

FCL is that they permit use the of old or lower-rated 

protection devices and avoid costly device 

replacement or upgrading with the rising of fault 

current levels. In addition, it protects devices from 

the first peak during short circuits, and it improves 

the voltage characteristics during fault conditions 

[1]–[11]. 

Several traditional methods are used to 

manage the short-circuit current in the power network 

like rearranging the system and splitting buses, 

reactors, fuses and circuit breakers [12]. Reactors are 

commonly used but they are not preferred due to their 

power loss at normal operating conditions. The fuse 

is a simple device with low prices but it considers a 

single-use device, which has to be manually replaced 

by the technical person, which may cause an increase 

in the duration of the interruption. Circuit breakers 

(CBs) are different types of protective devices, easily 

controlled manually or automatically. However, it 

has a limited lifetime, especially (CBs) with high 

rated capacity. In addition, they make the first few 

cycles of the fault current pass through them before 

taking any action. Scientists are worried about the 

increase in electricity demand in the future, this issue 
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has gotten a lot of attention from researchers in recent 

years. As a result, the fault current limiter (FCL) 

applications have succeeded in being the most 

suitable solution for this issue. Recently, different 

models of FCLs have been applied by various 

research institutions and companies in other countries 

around the world [13]–[23] 

 

Selecting the Suitable FCL for a certain 

application is not an easy task, it depends on many 

parameters based on the variety of FCLs types, load 

application, study of FCL effects on the network, in 

addition, the cost analysis study. Therefore, this 

research attempts to present a new classification 

based on several aspects that may concern 

researchers in this field, like; FCLs applications, the 

technology of manufacturing, networks and system 

types, rated power and cost-effective by reviewing 

the latest research and references that have worked to 

develop this field. 

 

1. FCLs principle of operation  

The FCL is the equipment used to limit 

excessive current during fault conditions. In addition, 

functions such as current interruption can be added. 

Furthermore, different types of limiters are being 

developed to make its implementation more cost-

effective [23]. The role of the FCL is to insert a high 

impedance during the fault condition and limit the 

fault current. The operation of FCL and the effect on 

the fault current are demonstrated in fig. (1).The 

principle of operation in all FCL technologies is 

illustrated in Fig. (5). FCL has to keep a system with 

low impedance during normal operation and high 

impedance during the fault to limit the fault current 

in the system [24], [25]. 

 

 
 

 
Figure 1 - The principle of operation of a FCL and the effect on the fault current are demonstrated 

 

2. FCLs Classifications  

There is no general specification for the fault current 

limiters. This paper provides a classification for the 

FCL concepts, IEEE classified the FCLs according to 

the type of impedance inserted into the circuit in the 

current limiting mode into two categories [16], 

Another classification for the FCL technologies was 

found in CIGREaccording to the behavior during 

normal operation and fault conditions or according to 

the network configuration [26]. However, the FCLs 

can be classified according to the following 

parameters 
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2.1. IEEE classifications 

According to the IEEE, there are two types of FCLs 

according to the type of impedance inserted into the 

circuit in the current limiting mode into two 

categories; type A and type B, type A as a limiter only 

and type B provide current interruption capability, 

each type have two sub-types according to the type of 

resistance, linear/resistive impedance or non-

linear/inductive impedance [16]. 

 

 
Figure 2 - IEEE classification 

 

2.2. CIGRE classifications  

CIGRE, has another point of view in classifying the FCL [26], and they have two types of classifications, we can 

consider it type (A) and type (B). CIGRE classification type (A) is according to the behavior of FCL during normal 

operation and fault conditions can be classified into  

• Passive : which have permanent impedance during normal and fault condition  

• Active : which have a variable impedance can be adapted according to the system condition  

 

 
Figure 3 - CIGRE type (A) classifications 

 

CIGRE classification type (B) according to the network configuration can be classified into 

• Topological : infrastructure and network arrangement is needed   

• Apparatus : a devise will be added in the network according to the required application 
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Figure 4 - CIGRE type (B) classification 

 

2.3. Classification according to the application types 

The FCL can change its impedance according to the system conditions, so the FCLs have a wide range of 

applications [27]–[32] . it is countless because it held many hopes for solving the problem of increasing the fault 

current, Also, it helps with system improvements, such as parallel operation, improvement of voltage  

 

 
Figure 5 - FCLs application  

 

characteristics, and improvement of system stability. 

Examples of the FCLs application can be illustrated 

in Fig. (5)  

As a sample from the common application of using 

the FCL is distributed generation coupling. Adding 

the DG to the main network needs a high-cost 

coupling transformer which needs to be protected by 

FCL, as well as the power plant auxiliary system. It 

is known that the prospective fault current could be 

high in the systems located near the main generator. 

Using FCL's can keep the prospective fault current in 

capability ranges. Another application is ship 

propulsion systems. It is normal these days to find a 

small ship with a 150 MW power generator, which is 

normal due to the turning from mechanical to electric 

systems. However, the voltage level on marine power 

systems is up to 15kV, which makes the current fault 

level very high, so that FCLs devices are preferred to 

be used. Another application is the transformer feeder 

with bus bar coupling. FCL's can be used to couple 

between two MV bus bars and transformer feeders. 

The parallel connection between two low-impedance 

transformers can be made because the FCL can 

change its impedance according to the system 

conditions, which leads to lower losses, high quality 

in voltage characteristics, and higher stability. FCL's 

also allow installations of large loads without system 

upgrades [33]–[39] . 

2.4. Classification according to manufacturing 

material 

In addition, another classification for the FCL, 

according to the manufacturing material, was 

considered superconducting FCL and  non-

superconducting FCL[40]. Both superconducting and 

non-superconducting FCL has been widely used for 

different applications, such as protection, stability, 

fault current reduction, and interruption. Both types 

have been extensively applied in transmission and 

distribution networks and renewable energy systems 

for different purposes such as stability enhancement, 

protection improvement, fault current reduction and 

fault ride-through capability enhancement.  

2.4.1. Superconducting FCL 

Superconductivity is a set of physical properties 

observed in certain materials where electrical 

resistance vanishes and magnetic flux fields are 

expelled from the material. Any material exhibiting 

these properties is a superconductor. FCLs which is 

manufactured from Superconducting material is 

classified as Superconducting FCLs.  as shown in 

Fig. (6) there is many different type of 

Superconducting FCLs can be used in network [41] .  
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Figure 6 - Superconducting FCLs 

 

A. Non-inductive SFCL 

The main principle of the non-inductive Super FCL 

is tow current coil is connecting into anti-parallel 

connection with good magnetic coupled between 

them and a novel non-inductive high temperature 

superconducting (HTS) unit. Mode. The impedance 

of the HTS magnet is zero at the normal operation 

and it will be increase in case of fault. That will help 

in current limiting and interruption as well. An 

example for Non inductive SFCL is shown in Fig. (7) 

[42]–[46].   

 

 
Figure 7  - Non-inductive SFCL. 

 

B. Inductive SFCL 

The inductive type is a unique transformer 

inserted in series on the network. This transformer 

has a normal primary coil, with a special secondary 

coil (superconductor ring). The primary winding 

resistance and leakage inductance determine the 

impedance of the FCL. Thus, the FCL exhibits a low 

impedance (approximately the leakage reactance). 

When the current increases over threshold, the 

superconductor ring goes into a normal state. In this 

case, the FCL act like a high impedance 

(approximately the main field reactance). The circuit 

of inductive SFCL is shown in Fig. (8) [47]–[49] 

 

 
Figure 8 - Inductive SFCL 

C. Transformer SFCL 

The transformer (SFCL) helps improve the 

reliability of the power source and increases the 

system's stability. It consists of two high-temperature 

superconducting coils. The transformer type SFCL 

can help to improve supply reliability and power 

system stability.The load will be connected to the 

primary side, whereas the secondary side is 

connected in series with superconductors. The 

equivalent circuit of the transformer type SFCL is 

shown in Fig. (9), where E1 is the voltage across the 

terminals of the SFCL, and I1 and I2 are the current 

through the primary and the secondary coils, 

respectively. M is the mutual inductance between the 

primary coil and the secondary coil, and R2 is the 

resistance of the secondary coil [50]–[53]. 

 
Figure 9 - Transformer type SFCL 

 

D. Resistive SFCL 

The resistive superconductor FCLs depend 

on ohm resistance with the SFCL material. It helps to 

improve system stability during any transient events 

by extinguishing the level of fault currents quickly 

and efficiently. It is just a low-temperature 

superconducting wire or a known length of high-

temperature superconductors. In the case of normal 

operation, the superconductor is in a superconducting 

mode without resistance. If the fault current exceeds 

the critical limits, the superconductor goes into its 

normal state and it has high resistance connected in 

series with the network. This resistance will limit the 

current. Parallel resistance is required to be 

connected with the superconducting element. A 

simple structure of resistive SFCL is shown in fig. 

(10) [54]. 
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Figure 10 - Resistive type superconductor FCL 

 

E. Flux Lock SFCL 

The Flux Lock type SFCL, consists of two 

coils wound in parallel or series on the iron core. The 

variation of the winding direction and the inductance 

ratio between the two coils help adjust the operating 

current and the limiting impedance, which leads to 

comprising the size of the SFCL and reducing the 

power burden superconducting modules. In Fig. (11). 

The main principle idea is that two magnetic fluxes 

from two windings cancel each other at a normal time 

and are not canceled due to the quench occurrence of 

the HTSC element after a fault occurs. The no 

cancellation between two magnetic fluxes induces 

the voltages across two coils and the third winding, 

which can be contributed as the fault current limiter. 

After the short-circuit occurs, the load, which needs 

constant power irrespective of the short-circuit, can 

be supplied by the third winding [55], [56]. 

 

 
Figure 11 - Flux lock SFCL. 

 

F. Magnetic shield SFCL 

It is mainly made from conducting coil, 

superconducting coil, a cryostat and iron core. All are 

concentrically arranged. It looks like a transformer 

have a superconducting coil connecting with the 

secondary winding at both ends and the primary 

winding is connected in series with the network. In 

this type, we need to cool the superconducting 

material only [57], [58], configuration circuit for this 

type is shown in Fig. (12) 

 

 
Figure 12 - Inductive-shield type SFCL 

 

G. Hybrid SFCL 

The hybrid FCLs use a combination of 

different technologies to achieve the advantages of 

each one, like mechanical switches, solid-state 

materials and others. They need an external element 

to detect the short-circuit current; short-circuit 

detection system (SDS) and a commutation circuit, 

which is considered the main part of limiting and 

interrupting the current, consisting of a predefined 

inductor and a capacitor (Lk, Ck). A basic 

configuration for the HFCL is shown in fig. (13). The 

load is fed by the main circuit breaker in the normal 

state and the SDS monitors the load current. Once the 

SDS detects the fault current and its direction, it 

sends firing signals to the target thyristors according 

to the target path for the stored energy in the pre-

charged capacitor (Ck) to limit the fault current. Once 

the current is limited to a target value, the circuit 

breaker will open to interrupt the fault current [59]–

[63]. 

 

 
Figure 13 - Single phase configuration for the HFCL 

 

The types of FCL devices continue to 

increase and research development is trying to 

achieve the most advantages of each kind using the 

new technologies. In table (1), the main advantages 

and disadvantages of each type of superconducting 

FCLs. 
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Table 1 - Comparisons between different types of SFCLs 

SFCL Types Advantage Disadvantage 

Non-Inductive 

• Cost is low  

• Small recovery time  

• Small AC losses  

• Switched in H.V is easy 

• Volume of cryogenic is high  

• High leak reactance and 

Circulating Current  

 

Inductive 
• Regarding to coreless 

construction, the weight and size is very 

small  

• It has losses in standby mode due 

to the leak reactance  

• Traditional C.B is needed to avoid 

HTS winding temperature  

Transformer 

• A regulation for the fault current 

can be done. 

• Small recovery time 

• Current limiting time is high  

• Need high power burden from 

SFCL 

Resistive Type 

• Automatic recovery and faster 

excessive current limiting capability  

• Lower size  

• Lower cost  

• Easy structure  

• Superconductor must have along 

length in case of high voltage application. 

• It have high losses and long 

recovery time  

Flux lock  

• Variable operation current  

• Low losses in superconducting 

module  

• Big size  

• Heavy weight  

• High cost  

Magnetic Shield 

• Self-detection for short circuit 

current  

• Flexible design duo to 

transformer ratio 

• Provide electrical isolation 

between SFCL and power circuit 

• Make some distortion for the 

voltage characteristics in the normal 

operation 

• It causes a magnetic field interface 

which effect on the nearby sensitive devise  

Hybrid 

• Operating in high current 

application due to using the conventional 

C.B  

• No losses during standby mode  

• External circuit for fault current 

detection is needed  

 

2.4.2. Non-superconducting FCLs 

The Non-superconducting fault current limiters are just another type of fault current limiter that can help to 

extinguish the fault current within a safe range. In addition, they could improve the system stability with minimal 

cost compared to the superconducting FCLs. As shown in fig. (14) there are many different types of non-

superconducting FCLs, [64]–[66] . 

 

 
Figure 14 - Non - superconducting FCLs 
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A. Series dynamic braking-resistor (SDBR) 

This type has been widely used in power 

systems, especially in wind farm applications.The 

SDBR is made from a resistance element in parallel 

with a solid-state switch. The switch converts from 

on-state to off-state based on system conditions, as 

shown in Fig. (15). In the case of faults, the IGBT of 

SDBR is turned on and turned off in a dynamic 

model. The IGBT gate got a switching pulse was 

generated in the control circuit. The SDBR is 

connected in series with the line to limit current 

during disturbances [67]–[69].  

 

 
Figure 15 - SDBR Configuration 

 

B. Bridge type (BFCL) 

BFCL consisted of two main parts, shunt and bridge, 

as shown in Fig. (16). the principal work is to place 

induction and resistance at the start of the fault. It has 

a low cost of application because it does not need 

superconductive material for its operation [70]–[72]. 

 

 
Figure 16 - Bridge type fault current limiter 

C. Modified bridge FCL (MBFCL) 

 Any change in the shunt impedance can 

affect the behavior of the BFCL. That is why it is 

called modified BFCL. This type was improved for 

the enhancement of fixed-speed and variable-speed 

wind farms. An example for this type is shown in fig. 

(17) [73], [74] 

 
Figure 17 - Modified bridge type fault current 

limiter 

 

D. DC Link type (DLFCL) 

 According to most common technologies 

for limiting current, a FLC has to be inserted in series 

with each phase on the AC side of the voltage source 

inverter (VSI). This approach is the well-known 

application of FCLs in the power system. But DLFCL 

just one single set is installed, which is placed on the 

DC side of the VSI, and it is employed to limit the 

VSI's fault current in all three phases during all types 

of a grid fault.Also, from the power circuit topology 

point of view, the DLFCL uses the diode rectifier 

bridge and the fully controllable solid-state switch as 

a high-speed switch. So, the application of the 

DLFCL on the DC side of the VSI, in comparison 

with the previously introduced structures for AC side 

application, results in a considerable reduction in the 

current limiting costs of the FCLs. A simple 

configuration for the DLFCL is shown in Fig. (18) 

[75], [76]. 

 

 
Figure 18 - DC link FCL. 

 

E. Transformer coupled bridge (BFCL) 

It is also known as the transformer isolated rectifier 

bridge FCL. This type is proposed for high voltage 

applications because it can provide an electric 
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isolation between the Ac and DC sides. In addition, a 

bypass resistor element can be placed to absorb the 

current distortion during normal mode condition and 

to reduce voltage spikes, as shown in Fig. (19) [77], 

[78]. 

 
Figure 19 - Transformer coupled (BFCL) 

2.5. Parameters and Placement Selection of 

Fault Current Limiters 

Selecting the optimal elements and the best location 

for the FCL is considered the most important part of 

the FCL design. There are many different types and 

many different applications. Choosing the most 

suitable type for a certain application is the main 

point in the FCL design. It will save money and make 

significant improvements to the system stability 

during a fault condition.  Selecting the best location 

with the optimal elements for the FCL is subjected to 

many different parameters, like a type of application, 

rated voltage, rated current, and the current fault level 

expected on the network. Techniques for selecting 

the best parameters and location have been reported 

[79]–[88]. 

 

2.6. Field Tests of FCLs 

 The field test is necessary to confirm that the 

FCLs is meet the manufacturing specifications. The 

test applied on the FCL is classified according to 

IEEE Std. C37.302-2015 to Production (routine) tests 

and field inspection, There is many practically 

installation and field tests have been done in different 

country with results and recommendations for further 

study. testing and this test is demonstrated in Table 

(2) [16], [90]–[95]

. 

Table 2 - Production (routine) tests and field inspection 

Production (routine) tests Field inspection, testing 

❖ Power frequency voltage 

withstand test 

❖ Partial discharge 

❖ Control circuit voltage and 

wiring checks 

❖ Visual inspection 

❖ FCL technology-specific tests 

❖ Inspection and installation verification list  

o Inspect components for physical and structural damage, 

unusual physical conditions, defects, and signs of corrosion,  

o Inspect equipment and components to be assembled for 

correct shipped parts,  

o Inspect equipment for cleanliness and being free of 

dents, scratches or missing parts,  

o Inspect wiring for insulation damage, broken leads, 

tightness of connections, and proper crimping,  

o Verify equipment nameplates and identification labels 

against drawings, and  

o Verify removal of shipping braces. 

o Verify equipment grounding for adjustment and 

alignment, 

 

❖ General test before commissioning which including: 

o Trip circuits, 

o Cryogenic or cooling systems, 

o Disconnect or other switches, 

o Dielectric integrity of the main circuit, and 

o Continuity check of the main circuit. 

 

2.7. Current Challenges and Future Works 

 The new technology in manufacturing FCLs 

opens new horizons for researchers in developing 

new types that will consider all the requirements 

provided in the FCLs to play the target roles with high 

efficiency. Still, researchers will face new challenges 

in selecting the most suitable FCLs for suitable 

applications with minimal cost. Regarding this view, 
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it is recommended that research be conducted to cover 

the following points for FCL application in power 

systems. 

• Financial study for different types of FCLs 

• The parameters for selecting the optimal 

design and optimal location according to the 

application type, considering the network 

uncertainties. 

• Comprehensive studies for superconducting 

and non-superconducting FCLs 

• Development of the non-superconducting 

FCLs and conducting their field tests for real network 

applications. 

• Development in ways of fault current 

detection which help the FCLs to act fast and 

accurately. 

 

2.8. Conclusion. 

FCLs proved that they can protect the network from 

the perspective fault current, without any huge 

investment in new equipment. Since there is a wide 

range of FCLs types that need to be classified, making 

a selection of the suitable type for the required 

application is an easy task. This paper presents 

different types of classification according to IEEE, 

CEGRE, and other parameters. In addition to, a 

comprehensive survey on superconducting and non-

superconducting FCLs was present which present the 

most available and suitable type for different 

applications 
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